Commissioning of LArGe Gas / Liquid

A. Gangapshev

M. Heisel

A. Klimenko

S. Schönert

A. Smolnikov

G. Zuzel

Reminder: The LArGe Setup

operation of naked HPGe-crystals in LAr using Ar-scintillation light as veto & for background diagnostics:

Lock: Can house up to 3 strings (9 detectors)

9 PMTs: For the detection of Ar-scintillation

reflector foil & wavelength shifter

Cryostat with LAr: Volume: 1000

liter

Shield:

Cu 15cm, Pb 10cm, Steel 23cm, PE 20cm

History Overview Since Last Meeting

last meeting: first scintillation light in GAr presented

→ light degradation discovered

nov 09:
1st LAr filling of cryostat

→ light quenched

nov - jan 10: investigations & cryostat modifications

feb 10
2nd LAr filling

→ light is stable!

Light Degradation Measurements in GAr

october '09: after last meeting

Light Degradation Measurements in GAr

october `09: prior to 1st filling with LAr

1st LAr Filling

- light yield lower by factor ~60
 - 0.03 pe/keV measured with Th-228 & Am-241
 - 1.8 pe/keV in Mini-LArGe
- slow component strongly quenched
 - triplet-lifetime: $\tau_{trip} = 66 \text{ ns}$

(lit.
$$\tau_{trip} = 1.1 \text{ to } 1.7 \text{ } \mu\text{s}$$
)

- mass spectrometer measurements:
 - N₂: 7 ppm
 - O₂: <4 ppm
 - no other trace contaminations found due to the limited sensitivity of the mass spectrometer

Triplet Lifetime (Slow Component) as an Indicator for Impurities

pulse shape average over 10000 pulses:

(example from GAr)

What is the Origin of the Contamination? Mini-LArGe Investigations...

Modifications on LArGe Cryostat

jan-feb `10:

- cryostat with GAr again
- support compensator to allow for pumping the cryostat
- degass from air residues by
 - heating up cryostat (15°C → 40°C)
 - * & perform flushing-pumping cycles

After Modifications: N₂ and O₂ constant vs. time

Light Degradation Measurements in GAr (2)

february `10: triplet lifetime in GAr is much more stable than before 1st filling

2nd Filling: Average Pulse Shape in LAr

3 PMTs, 2-fold trigger, no source

2nd Filling: Triplett Lifetime Stability in LAr

feb-mar `10: triplet lifetime in LAr is stable since 8 days

Conclusions & Outlook

- LArGe is filled with LAr & the scintillation light is stable since 8 days
- the triplet lifetime is
 - GAr: 3.5 μs @ 950 mbar (ref. 3.2 μs @ 1100 mbar)
 - LAr: 829 ns (lit. 1.1 to 1.7 μs)
 Mini-LArGe result: ~790 ns (@LNGS with Ar5.0),
 1.2 μs (@MPIK with Ar5.4)
- active cooling with LN runs very smooth
 good control over pressure & stable LAr filling level
- now we can start to study spectral properties of scintillation light in LArGe (light yield, resolution...)
- eventually (april?): mount lock and enter BEGe's